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Abstract

Maximum likelihood estimation of a censored autoregressive model with exoge-
nous variables (CARX) requires computing the conditional likelihood of blocks of
data of variable dimensions. As the random block dimension generally increases
with the censoring rate, maximum likelihood estimation becomes quickly numerically
intractable with increasing censoring. We introduce a new estimation approach us-
ing the complete-incomplete data framework with the complete data comprising the
observations were there no censoring. We introduce a system of unbiased estimat-
ing equations motivated by the complete-data score vector, for estimating a CARX
model. The proposed quasi-likelihood method reduces to maximum likelihood esti-
mation when there is no censoring, and it is computationally efficient. We derive
the consistency and asymptotic normality of the quasi-likelihood estimator, under
mild regularity conditions. We illustrate the efficacy of the proposed method by
simulations and a real application on phosphorus concentration in river water.
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1 Introduction

Censored time series data are frequently encountered in diverse fields including environ-

mental monitoring, medicine, economics and social sciences. Censoring may arise when a

measuring device is subject to some detection limit beyond which the device cannot yield

a reliable measurement. For instance, the total phosphorus concentration in river water

is an important indicator about water quality, and its fluctuations over time are often

monitored in environmental studies. However, the phosphorus concentration cannot be

measured exactly if it falls below certain detection limit.

There is an extensive literature on regression analysis with censored responses, since

the pioneering work of Buckley & James (1979). However, the case of regression with

both the response and covariates subject to censoring is relatively under-explored. Cen-

sored time-series regression analysis, for instance, the Tobit model with auto-correlated

regression errors (Tobin 1958; Robinson 1982a), falls in the latter framework. Robinson

(1980) studied maximum likelihood (ML) estimation of Gaussian time series models with

left (right) censored data, and showed that with sufficiently sparse censoring, the like-

lihood of a censored autoregressive (AR) model only requires 1-dimensional integration.

Robinson (1982a) showed that Gaussian likelihood estimation of a Tobit model that as-

sumes independent errors is still strongly consistent and asymptotically normal, even if the

Gaussian errors are auto-correlated. Moreover, Robinson (1982b) proposed two methods,

namely, conditional least squares and method of moments, for estimating the residual auto-

correlations, and established their strong consistency and asymptotic normality, under the

normal error assumption. The consistent autocorrelation estimates can then be used to

provide consistent estimation of any finite-order autoregressive-moving-average (ARMA)

model specified for the regression errors.

Zeger & Brookmeyer (1986) studied maximum likelihood estimation of a regression

model with the errors driven by an autoregressive (AR) model of known order p ≥ 0. We

first outline their approach in the simple case of no covariates and AR(1) errors. Without

censoring, the Markov property of the AR(1) errors imply that the log-likelihood can be

decomposed as the sum of the conditional log-likelihood of Yt given Yt−1. The presence of

censoring invalidates the Markov property, but Zeger & Brookmeyer (1986) pointed out
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a generalized Markov property: the conditional log-likelihood of Yt given all past Y ’s is

equal to that of Yt given Yt−j, j = 1, . . . ,m, if Ym is uncensored. Thus, the data can be

partitioned into blocks that are preceded by an uncensored observation, except possibly

the initial block, and the log-likelihood is the sum of the conditional log-likelihood of each

block of data given the uncensored observation preceding it, plus that of the initial block.

For AR(p) errors, the blocks are delineated by p consecutive uncensored observations, and

the log-likelihood is then decomposed as the sum of the conditional log-likelihood of each

block given the p consecutive uncensored observations preceding it, plus the log-likelihood

of the initial block; if exogenous variables are available, the (conditional) likelihoods are

further conditional on the exogenous variables. (See Robinson (1980) for a similar result in

the normal case.) However the block dimension increases quickly with increasing censor-

ing and the AR order; see the Appendix. Thus maximum likelihood estimation becomes

quickly numerically intractable with increasing censoring even for moderately high AR or-

der. Zeger & Brookmeyer (1986) also briefly discussed a pseudo-likelihood approach, but it

was not fully developed. Park, Genton & Ghosh (2007) introduced an imputation method

to estimate a censored time series model assuming the complete data is an ARMA process.

They proposed to impute the censored values by some random values simulated from their

conditional distribution given the observed data and the censoring information, and treat

the imputed time series as the complete data with which any estimation procedure for

complete time-series data can be used. However, they focused on the AR(1) model and

relied on simulation studies to demonstrate their method, with no derivation of theoretical

properties.

Our aim is to derive a computationally efficient estimation method via solving a sys-

tem of fixed number of unbiased estimating equations for estimating a censored regression

model with autoregressive errors. The basic idea of our approach assumes that the score of

the complete-data conditional log-likelihood of Y ∗
t given Y ∗

t−j, j = 1, . . . , p and the covari-

ates has a closed-form expression and so does its expectation given the (possibly) censored

time series Yt, t = 0, . . . , p, evaluated at the same set of model parameters. Setting the

preceding conditional mean score to zero then provides an unbiased estimating equation

for estimating the model. Our proposed quasi-likelihood method becomes maximum like-
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lihood estimation in the absence of censoring. Furthermore, we derive the consistency and

asymptotic normality of the proposed estimator under some mild regularity conditions. Im-

plementation of the proposed method for the important special case of normal innovations

is discussed in detail.

In Section 2 we elaborate the model, the proposed estimation procedure and its theoret-

ical properties. We report the empirical performance of the proposed method in Section 3,

and apply in Section 3.6 the proposed method in a real application with a series of censored

phosphorus concentrations in river water. We briefly conclude in Section 4. All technical

details are postponed to the Appendix.

2 THE MODEL AND ESTIMATION PROCEDURE

2.1 The CARX model

Let {Y ∗
t } denote the real-valued time series of interest. Let C ⊂ R be the censoring region

such that Y ∗
t is not observed if Y ∗

t ∈ C. The censoring region is frequently an interval of

the form (−∞, c) or (c,∞), or a finite interval (cl, cu), which are referred to as left, right,

and interval censoring, respectively (Park et al. 2007). In practice, for data subject to left

censoring with censoring limit c, the reported value Yt = max {c, Y ∗
t }, Yt = min {c, Y ∗

t } for

right censoring, and Yt = Y ∗
t × I(Y ∗

t ̸∈ C) + c × I(Y ∗
t ∈ C), where c = (cl + cu)/2, for

interval censoring. Below, the censoring pattern is not restricted, but assumed to be pre-

determined and independent of the underlying process. The proposed method is applicable

to left censoring, right censoring, interval censoring, or more general censoring patterns.

Additionally, let Xt be a vector covariate which bears a linear regression relationship

with Yt, with the regression errors assumed to follow an autoregressive model of order

p where p is some known non-negative integer. (The proposed method can be readily

extended to a nonlinear regression model.) {Xt} is assumed to be always observable.

Below, let vᵀ denote the transpose of a vector or matrix v. For a time series {st}, let

si:j = (si, si−1, . . . , sj) if i > j, and si:j = (si, si+1, . . . , sj) otherwise. We now state the
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model with the latent process given by

Y ∗
t = Xᵀ

t β + ηt, (1)

ηt =

p∑
i=1

ψiηt−i + εt, (2)

and their linkage to the observations given by

Yt =

 c, if Y ∗
t ∈ C,

Y ∗
t , otherwise,

(3)

where {εt} is an independent and identically distributed process with mean 0 and variance

σ2. For the general case of variable censoring region, C and c in Eqn (3) are replaced by

Ct and ct. The preceding model is referred to as the Censored Auto-Regressive model with

eXgenous variables (CARX). Let B denote the backshift operator so that for any time

series {st}, Bkst = st−k, k = 1, 2, . . ., and Ψ(B) =
∑p

i=1 ψiB
i. Eqns. (1) and (2) can be

rewritten as

(1−Ψ(B))(Y ∗
t −Xᵀ

t β) = εt. (4)

Let ψ = (ψ1, · · · , ψp)
ᵀ. Throughout, θ = (βᵀ, ψᵀ, σ)ᵀ denotes a generic parameter vector,

while θ0 denotes the true parameter vector. Throughout, it is assumed that σ0 > 0.

2.2 Estimation

We consider the problem of estimating a CARX model with data {(Yt, Xt)}nt=1 generated

from the CARX model with unknown parameter θ0. Further notations are required. Define

the following σ-algebras

F∗
t = σ

{
Xt:t−p, Y

∗
t−1:t−p

}
,

Ft = σ {Xt:t−p, Yt−1:t−p} ,

Gt = σ {Yt,Ft} .

Our proposed method is motivated by maximum likelihood estimation. Were {Y ∗
t }

observable and supposing {εt} admits a marginal probability density function (pdf) fθ(·),
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then the joint log-likelihood function for Y ∗
n:1 conditional on Xn:1 is given by

ℓ(Y ∗
n:1|Xn:1; θ) =

n∑
t=p+1

ℓ(Y ∗
t |F∗

t ; θ) + ℓ(Y ∗
p:1|Xp:1; θ),

where ℓ(Y ∗
t |F∗

t ; θ) = log fθ((1−Ψ(B))(Y ∗
t −Xᵀ

t β)), due to the AR(p) representation of the

regression errors {ηt}. Suppressing contributions from the initial values yields a simpler

conditional log-likelihood

ℓ∗(θ) =
n∑

t=p+1

ℓ(Y ∗
t |F∗

t ; θ), (5)

the maximization of which requires the first-order optimality condition:

0 = ∇ℓ∗(θ) =
n∑

t=p+1

∇ℓ(Y ∗
t |F∗

t ; θ),

where ∇ denotes taking the partial derivative with respect to θ.

However, censoring in the observed time series {Yt} entails that its joint log-likelihood

cannot be reduced to a simple form similar to the one for {Y ∗
t } (Zeger & Brookmeyer

(1986)). Let S(Y ∗
t |F∗

t , θ) = ∇ℓ(Y ∗
t |F∗

t ; θ). The proposed method of estimation is motivated

by the observation that for all t, Eθ(S(Y
∗
t |F∗

t , θ)|Gt) = 0 is an unbiased estimating equation,

and so is

n∑
t=p+1

Eθ [S(Y
∗
t |F∗

t , θ)| Gt] = 0, (6)

which combines information from all data. In principle, the σ-algebra Gt can be chosen

to include more or less information, for instance, Gt may be enlarged to the σ-algebra

generated by all data, namely, Y1, Y2, . . . , Yn, in which case the imputed score defined by

the left side of (6) is the observed-data score, and the associated Z-estimation method

corresponds to (conditional) maximum likelihood estimation. The current choice of Gt is

motivated by the ease of computation and the fact that in the absence of censoring, solving

the preceding estimating equation reduces to maximum likelihood estimation. Below, we

state an iterative algorithm for solving (6).

Step(1) Initialize the parameter estimate by some estimate, denoted by θ(0).
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Step(2) For each k = 1, . . . , obtain an update of estimate θ(k) by

θ(k) = argmaxθ Q(θ|θ(k−1)), (7)

where for any current estimate θ(c), Q(θ|θ(c)) =
∑n

t=p+1Qt(θ|θ(c)), and

Qt(θ|θ(c)) = Eθ(c) [ℓ
∗
t (Y

∗
t |F∗

t ; θ)|Gt] . (8)

Step(3) Iterate Step(2) until ∥θ(k) − θ(k−1)∥2/∥θ(k−1)∥2 < ϵ for some positive tolerance ϵ ≈ 0.

Let θ̂ be the estimate obtained from the last iteration.

We now justify the proposed iterative algorithm. In many casesQ(θ|θ(c)) is differentiable

with respect to θ, so solving Eq (7) is equivalent to solving the equation

∂Q(θ|θ(k−1))

∂θ
= 0. (9)

Under suitable regularity conditions, differentiation and expectation can be interchanged.

Let f(·, θ) be the density function of some distribution, S(·, θ) = ∇f(x, θ) = ∂f(x,θ)
∂θ

be its

first derivative. Then,

S(Y ∗
t |F∗

t , θ) = ∇ log f(Y ∗
t |F∗

t , θ),

S(Y ∗
t:t−p|Gt, θ) = ∇ log f(Y ∗

t:t−p|Gt, θ).

Throughout, we assume that

∂Qt(θ|θ(k−1))

∂θ
= Eθ(k−1) [S(Y ∗

t |F∗
t , θ)|Gt] .

Thus, θ(k) solves the following equation

n∑
t=p+1

Eθ(k−1) [S(Y ∗
t |F∗

t , θ)|Gt] = 0. (10)

Hence, if the iteration converges to a limit denoted by θ̂, then it holds that

n∑
t=p+1

Eθ̂

[
S(Y ∗

t |F∗
t , θ̂)

∣∣∣Gt

]
= 0, (11)

so that θ̂ solves the estimating equation (6).

7



Remark Since Eq. (6) may have multiple roots, it is desirable to initialize the preceding

algorithm by some estimate close to the true value. As mentioned in Section 1, in the case

of normal innovations and left (right) censoring, the estimators introduced by Robinson

(1982a) and Robinson (1982b) can be used to provide consistent estimates that can serve

as initial values for the proposed algorithm. However, these estimators are generally inef-

ficient, for instance, the initial AR estimates utilize information from a subset of the data

whose lagged responses from lags 1 to p are uncensored. Consequently, for small samples,

the initial AR estimates could be non-stationary. Similarly, the innovation variance esti-

mator could be non-positive (Amemiya 1973). We note that the methods introduced by

Robinson (1982a) and Robinson (1982b) may be lifted to the case of non-normal innovation

distributions which admit explicit formulas for their truncated moments; see Jawitz (2004)

for a survey of such formulas. An alternative initialization scheme consists of replacing the

censored observations by their censoring limits for left or right censoring or the mean of the

censoring limits in the case of interval censoring, and fitting model (1) with the modified

data as if they were uncensored. While the initial estimates so obtained are biased (Park

et al. 2007), our limited experience suggests that the algorithm so initialized generally

converges without problems.

We present another characterization of the proposed estimator θ̂. The conditional

pdf of Y ∗
t:t−p given Xt:t−p = xt:t−p is f(y∗t:t−p|xt:t−p, θ) = f(y∗t |F∗

t ; θ)f(y
∗
t−1:t−p|xt−1:t−p, θ) =

exp{ℓ(y∗t |F∗
t ; θ)}f(y∗t−1:t−p|xt−1:t−p, θ). Let R = R(yt:t−p) denote the collection of y∗t:t−p such

that yt:t−p is observed if and only if y∗t:t−p ∈ R. For instance, if none of yt:t−p are censored,

then R = {yt:t−p} whereas if all of yt:t−p are censored, then R =
∏p

j=0Ct−j. The likelihood of

θ based on Yt:t−p given Xt:t−p is f(Yt:t−p|Xt:t−p, θ) =
∫
R(Yt:t−p)

f(y∗t:t−p|Xt:t−p, θ)dy
∗
t:t−p, where

dy∗t:t−p signifies the product measure of the Lebesgue measure and the counting measure

induced on R, for instance, the counting measure if R is a singleton. Hence, we can estimate

the parameter by maximizing the composite likelihood L̃n(θ) =
∑n

t=p+1 log f(Yt:t−p|Xt:t−p, θ).

Indeed, this will provide a consistent estimator as, under some general regularity condi-

tions including ergodicity and stationarity, L̃n(θ)/n → L̃(θ) = Eθ0{log f(Yt:t−p|Xt:t−p, θ)}

which is uniquely maximized at θ0, the true parameter. A major difficulty of this ap-

proach is that the maximization problem is generally intractable. Thus, we extend the
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definition of f(yt:t−p|xt:t−p, θ) by decoupling the parameter indexing the conditional den-

sity of Y ∗
t given F∗

t from that of Y ∗
t−1:t−p given Xt−1:t−p, as follows: πδ,θ(yt:t−p|xt:t−p) =∫

R(yt:t−p)
exp{ℓ(y∗t |F∗

t ; δ)}f(y∗t−1:t−p|xt−1:t−p, θ)dy
∗
t:t−p and introduce the objective function

L̃n(δ, θ) =
∑n

t=p+1 log πδ,θ(Yt:t−p|Xt:t−p). Similarly, it holds under suitable conditions that

L̃n(δ, θ)/n → L̃(δ, θ) = Eθ0{log πδ,θ(Yt:t−p|Xt:t−p)} which is uniquely maximized at (θ0, θ0).

In particular, θ0 = argmaxδ L̃(δ, θ0).

The new objective function suggests an iterative estimation scheme by first updating

δ by some value that increases L̃n(·, θ) over its current value, with θ fixed at its current

estimate, followed by updating θ as the just updated δ, with the procedure repeated until

convergence. This is achieved by the proposed estimator θ̂, because

L̃n(δ, θ)− L̃n(θ, θ)

=
n∑

t=p+1

log

[∫
R(Yt:t−p)

exp{ℓ(y∗t |F∗
t ; δ)}f(y∗t−1:t−p|Xt−1:t−p, θ)dy

∗
t:t−p∫

R(Yt:t−p)
exp{ℓ(y∗t |F∗

t ; θ)}f(y∗t−1:t−p|Xt−1:t−p, θ)dy∗t:t−p

]

=
n∑

t=p+1

log

[∫
R(Yt:t−p)

exp{ℓ(y∗t |F∗
t ; δ)− ℓ(y∗t |F∗

t ; θ)}f(y∗t:t−p|Xt:t−p, θ)dy
∗
t:t−p∫

R(Yt:t−p)
f(y∗t:t−p|Xt:t−p, θ)dy∗t:t−p

]
≥ Q(δ|θ)−Q(θ|θ),

where the last inequality follows from Jensen’s inequality. The consistency of θ̂ derived

in the next section shows that it maximizes the objective function L̃n(θ) asymptotically.

Henceforth, the proposed method will be referred to as quasi-likelihood estimation.

2.3 Asymptotic properties of the estimator

In general it is difficult to establish the global consistency of an estimator, which is also the

case for our setting. Fortunately, as remarked earlier, a consistent estimator is generally

available, so it suffices to establish local consistency for the proposed estimator. Henceforth,

the initial estimate θ(0) for the iterative algorithm is assumed to be consistent. Therefore,

we can and shall restrict the parameter space to Θ, a neighborhood of θ0 which, without

loss of generality, is furthermore assumed to be compact.

The covariate process {Xt} is assumed to be stationary and β-mixing with exponentially

decaying mixing coefficients, which is a mild assumption. So shall we assume the regression
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error process {ηt}, which holds if (i) all roots of the characteristic polynomial 1−
∑p

j=1 ψjz
j

lie outside the unit circle (Cryer & Chan 2008) and (ii) εt admits a pdf (Pham & Tran 1985).

The asymptotic property of the estimator depends on the following Z functions,

Zt(θ) =
∂Qt(θ|θ(c))

∂θ
|θ(c)=θ = Eθ [S(Y

∗
t |F∗

t , θ)|Gt] ,

Z(n)(θ) =
1

n− p

n∑
t=p+1

Zt(θ),

Z(θ) = Eθ0 [Zt(θ)] .

The estimating equation (6) is equivalent to

Z(n)(θ) = 0. (12)

To establish the desired consistency and asymptotic normality for the proposed estimator,

we make heavy use of empirical process theories for Vapnick-Cervonenkis (V-C) classes of

functions (Arcones & Yu 1994). See Van der Vaart (2000) for a review of V-C class. We

shall require the process {Zt(θ); θ ∈ Θ} to be a V-C class satisfying some moment condition.

In summary, the following assumptions are imposed below. Let q ∈ (2,∞) be some

fixed real number.

A1. The initial estimate θ(0) is a consistent estimator and the parameter space Θ is a

compact neighborhood of the true parameter θ0.

A2. The covariate process {Xt} is β-mixing with exponentially decaying mixing coeffi-

cients.

A3. The censoring region may vary with t but it is assumed to be an interval Ct = (ct,l, ct,u)

with possibly infinite censoring limits. Alternatively, the censoring region is the com-

plement of an interval Ct = (ct,l, ct,u)
c, in order to accommodate simultaneous left and

right censoring. The process {(Y ∗
t , Xt, ct,l, ct,u)} is stationary. The censoring limits

are β-mixing processes with exponentially decaying mixing coefficients, independent

of {Xt} and {Y ∗
t }.

A4. For all |z| ≤ 1, the polynomial 1−
∑p

j=1 ψjz
j ̸= 0.
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A5. The distribution of εt has a twice differentiable pdf.

A6. The class of functions {Zt(θ) : θ ∈ Θ} is a V-C subgraph class and there exists an

envelope function F such that supθ∈Θ |Zt(θ)| ≤ F with F ∈ Lq.

A7. The matrix ∇Z(θ) = Eθ0 [∇Zt(θ)] is continuous in θ and it is nonsingular at the true

parameter θ0.

The asymptotic properties of the proposed estimator are established in the following

theorem.

Theorem 2.1. Under A1–A6, the quasi-likelihood estimator θ̂ is locally consistent, i.e.,

θ̂
P−→ θ0, over all sufficiently small compact neighborhood Θ of θ0.

Furthermore, if A7 holds, it is also asymptotically normal, i.e.,

√
n
(
θ̂ − θ0

)
L−→ N(0,Σ),

where Σ = M−1
1 M0(M

−1
1 )ᵀ, M0 =

∑∞
i=−∞ Eθ0

[
Zt+|i|(θ0)Z

ᵀ
t (θ0)

]
and M1 = Eθ0 [(∇Zt)(θ0)].

Remark Note that the asymptotic covariance matrix has a sandwich form involving two

matrices. The first one M1 is assumed to be non-singular, and the second matrix M0 is an

infinite sum of auto-covariance matrices. Both matrices are not easy to compute. In this

regard, a parametric bootstrap procedure is proposed to estimate the covariance matrix

Σ and construct confidence intervals of the unknown parameters. Specifically, given the

estimator θ̂ and using the observed {Xt}, uncensored observations of the same sample

size can be readily simulated. Then the uncensored observations can be subject to the

observed censoring scheme to yield the simulated censored time-series responses with which

a bootstrap estimate θ̃ can be obtained using the iterative algorithm. The bootstrap

procedure can be replicated for, say, B times to yield a sample of bootstrap parameter

estimates with which the sample covariance matrix of the bootstrap estimates provides

an estimate of the covariance matrix of θ̂. Also, confidence intervals can be constructed

directly from the sample quantiles of the bootstrap parameter estimates.
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2.4 Normal innovations

We now specialize to the important case that the innovations {εt} are normally distributed

with zero mean and common variance σ2. Then the log-likelihood of Y ∗
t conditional on F∗

t

is given by the following expression apart from an additive constant,

ℓ(Y ∗
t |F∗

t , θ) =− 1

2
log(σ2)−

{
(Y ∗

t −Xᵀ
t β)−

p∑
j=1

ψj

(
Y ∗
t−j −Xᵀ

t−jβ
)}2

/2σ2.

For any given parameter vector θ, let

Zt1,t2(θ) = Eθ[Y
∗
t1
|Gt2 ],

Σt(θ) = cov(Y ∗
t:t−p|Gt; θ),

which can be readily computed based on the explicit formulas for the moments of a trun-

cated multivariate normal variable (Tallis 1961); see also the R (R Core Team 2015) package

mvtnorm (Genz & Bretz 2009; Genz, Bretz, Miwa, Mi, Leisch, Scheipl & Hothorn 2014).

Then

Qt(θ|θ(c)) = Eθ(c) [ℓ
∗
t (θ)|Gt]

=− log(σ2)/2− ([Zt,t(θ
(c))−Xᵀ

t β −
p∑

j=1

ψj

{
Zt−j,t(θ

(c))−Xᵀ
t−jβ

}
]2

+(1,−ψᵀ)Σt(θ
(c))(1,−ψᵀ)ᵀ

)
/(2σ2).

The maximization required in Step (2) can be carried out via block co-ordinate descent

that sequentially updates β, ψ’s and σ2 block by block as follows:

1 For given θ(k), ψ, and σ, the regression coefficient β is updated by regressing Zt,t(θ
(k))−∑p

j=1 ψjZt−j,t(θ
(k)) on Xt −

∑p
j=1 ψjXt−j for t = p+ 1, . . . , n.

2 For given θ(k), β, and σ, update ψ by maximizing the Q function which is a quadratic

function of ψ so the optimization can be readily done. Alternatively, it suffices to

update ψ to another feasible vector which increases Q(·|θ(k)).

3 For given θ(k), β, and ψ, update σ by the formula

σ2 =
1

n− p

n∑
t=p+1

([Zt,t(θ
(k))−Xᵀ

t β −
p∑

j=1

ψj{Zt−j,t(θ
(k))−Xᵀ

t−jβ}]2

+ (1,−ψᵀ)Σt(θ
(k))(1,−ψᵀ)ᵀ).
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Furthermore, it is clear that assumption A5 is true. A6 can also be verified as in

Proposition 5.1 with some mild assumptions about Xt. In addition, A7 can be verified

for the case of left (right) censoring with a constant censoring limit. The proof techniques

used there can be extended to other continuous innovation distributions, under certain

regularity conditions.

2.5 Model prediction

Consider the problem of predicting the future values Y ∗
n+h, where h = 1, 2, . . . , H, given

the observations {(Yt, Xt)}nt=1 and supposing the availability of future covariate values

{Xt+h}Hh=1. To simplify the derivation of the predictive distribution, we assume the nor-

mality of εt and known θ0, although the following method can be readily extended to non-

normal innovations. Due to the autoregressive nature of the regression errors ηt = Y ∗
t −X

ᵀ
t β,

the conditional distribution

Ln,h = L(Y ∗
n+h| {Xn+i}hi=1 , {(Yt, Xt)}nt=1)

= L(Y ∗
n+h| {Xn+i}hi=1 , {(Yt, Xt)}nt=τ ),

where τ = max
(
{1} ∪

{
1 ≤ u ≤ n− p+ 1 : none of {Yt}u+p−1

t=u is censored
})

; see Zeger &

Brookmeyer (1986).

If τ = n − p + 1, i.e., the most recent p Y ’s are uncensored, the prediction problem

is the same as that for an ordinary time series regression model. In particular, for any

h = 1, . . . , H, Ln,h is a normal distribution. Specifically, the predicted value Ŷ ∗
n+h is given

recursively by Ŷ ∗
n+h = Xᵀ

n+hβ + η̂n+h, with η̂n+h =
∑p

l=1 ψ̂lη̂n+h−l, and η̂t = Yt − Xᵀ
t β for

t ≤ n. The prediction error can be written as ϵn+i = εn+i+
∑p

l=1 ψlϵn+i−l =
∑i

j=0 ωi,jεn+i−j,

where the coefficients ωi,j can be calculated recursively through the preceding identity and

the initial condition ωi,0 = 1, which results in a formula for the prediction variance, namely,

var(Ŷ ∗
n+h) = σ̂2

∑i
j=0 ω

2
i,j.

If τ < n − p + 1, then Ln,h is generally a truncated multivariate normal distribution.

Although its first and second moments can be computed analytically, they are not as useful

in constructing predictive intervals. Here a Monte Carlo method is proposed to estimate

any interesting characteristic of the predictive distribution of Y ∗
n+h. Note that the regression
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errors {ηt = Y ∗
t −Xᵀ

t β}
n
t=τ follows a multivariate normal distribution, unconditionally. Let

ηc and ηo be the sub-vectors of ητ :n such that the corresponding elements of Yτ :n are censored

and observed, respectively. Then given Yτ :n, ηc follows a truncated multivariate normal

distribution, whose realizations can be readily simulated so we can draw realizations from

the conditional distribution of Y ∗
n−p+1:n and thence those of Y ∗

n+h, h = 1, . . . , H, given

{(Yt, Xt)}nt=1 and {Xt+h}Hh=1. We can then construct predictive intervals of Y ∗
n+h from a

random sample from the predictive distribution of Y ∗
n+h, using the percentile method.

2.6 Simulated residuals

In the presence of censoring, there are several ways to define residuals, for instance, gen-

eralized residuals and simulated residuals (Gourieroux, Monfort, Renault & Trognon 1987;

Hillis 1995). See also Cox & Snell (1968). If Y ∗
t is observed, the corresponding residual

is universally defined as Y ∗
t − Ŷ ∗

t|t−1, where Ŷt|t−1 is the mean of Lt−1,1, evaluated at the

parameter estimate. In the presence of censoring so that some Y ∗
t s are unobserved, we

compute the simulated residuals as follows: First, impute each unobserved Y ∗
t by a real-

ization from the conditional distribution L(Y ∗
t | {(Ys, Xs)}ts=1), evaluated at the parameter

estimate. Then, refit the model with {(Y ∗
t , Xt)} so obtained, via conditional maximum

likelihood; the residuals from the latter model are the simulated residuals ε̂t. Let the cor-

responding parameter estimate of θ be θ̃. The corresponding (simulated) partial residuals

for the X’s, i.e., X
ᵀ
t β̃ + ε̂t, can be used to assess the relationship between Y and X, after

adjusting for the autoregressive errors. Gourieroux et al. (1987) showed that under some

regularity conditions, model diagnostic tests using the simulated residuals have the same

asymptotic null distributions as the uncensored case. Limited simulation study reported

below shows that the asymptotic null distribution of the Ljung-Box test statistic based on

the simulated residuals is the same as that for uncensored data, hence it provides a useful

tool for model diagnostics.
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3 DATA EXAMPLES

3.1 Empirical performance of the proposed estimation method

We study the empirical performance of the proposed method by simulations. Data were

simulated from the CARX model subject to left censoring with a constant censoring limit

c, with the covariate Xt’s being independent two-dimensional random vectors comprising

independent standard normally distributed components. The regression errors follow an

AR(3) process with normally distributed innovations of zero mean and variance σ2. Left

censoring is enforced with the censoring limit being −1.5, −0.7, and −0.2 to make approx-

imate censoring rates of 5%, 20%, and 40%, respectively. Several sample sizes including

100, 200, 500 and 1000 were tried. Unless stated otherwise, all experiments were repli-

cated 1000 times. As comparison, we contrast the proposed method (method 1 in Table 1)

with the incorrect but convenient method of ignoring censoring and applying conditional

maximum likelihood estimation with the censored data simply replaced by their censoring

limits (method 0), whose estimates served as the initial values for the proposed method.

Table 1 reports the sample mean for each parameter estimate and their sample stan-

dard deviations enclosed in round brackets, for both methods. In addition, the empirical

coverage rates of the 95% confidence interval obtained by parametric bootstrap are listed

in square brackets, but only for the proposed method because conditional maximum likeli-

hood estimation ignoring censoring is quite biased for the case of moderately high censoring

rate. It can be seen that the proposed method performed well in all cases, while ignoring

censoring led to increasing bias with the censoring rate. For both methods, the variance

of the estimator increased with the censoring rate and decreased with the sample size.

Parametric bootstrap seems to work well as the empirical coverage rates of the bootstrap

confidence intervals were quite close to the nominal 95%.

3.2 Comparison with maximum likelihood estimation

We examine the potential loss of efficiency of the proposed method as compared with ML

estimation, by simulation for the case of AR(1) errors. Specifically, data of size 100, 200, or

400, respectively, were simulated and censored whenever their magnitude exceeded certain
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n c method β1 β2 ψ1 ψ2 ψ3 σ

- - - 0.2 0.4 0.1 0.3 -0.2 0.707

100

-1.5
0 0.187 (0.07) 0.380 (0.07) 0.0936 (0.10) 0.282 (0.10) -0.183 (0.10) 0.666 (0.05)

1 0.195 (0.07) [93.4%] 0.398 (0.06) [93.6%] 0.0969 (0.10) [95.0%] 0.286 (0.10) [94.3%] -0.187 (0.10) [95.2%] 0.690 (0.05) [77.5%]

-0.7
0 0.154 (0.063) 0.314 (0.059) 0.0930 (0.10) 0.273 (0.10) -0.148 (0.10) 0.587 (0.047)

1 0.196 (0.077) [92.8%] 0.399 (0.074) [95.4%] 0.0934 (0.11) [94.2%] 0.285 (0.11) [93.7%] -0.187 (0.11) [95.9%] 0.689 (0.060) [87.4%]

-0.2
0 0.116 (0.054) 0.235 (0.054) 0.162 (0.097) 0.339 (0.11) -0.0269 (0.095) 0.509 (0.050)

1 0.195 (0.083) [93.5%] 0.399 (0.083) [93.4%] 0.0909 (0.12) [94.9%] 0.278 (0.12) [93.7%] -0.189 (0.13) [96.4%] 0.682 (0.068) [85.5%]

200

-1.5
0 0.190 (0.045) 0.381 (0.045) 0.0956 (0.069) 0.290 (0.069) -0.188 (0.068) 0.675 (0.034)

1 0.199 (0.047) [94.6%] 0.399 (0.049) [93.9%] 0.0980 (0.070) [95.6%] 0.294 (0.070) [94.1%] -0.193 (0.070) [96.1%] 0.699 (0.038) [90.1%]

-0.7
0 0.157 (0.040) 0.315 (0.041) 0.0975 (0.070) 0.282 (0.074) -0.149 (0.066) 0.596 (0.034)

1 0.200 (0.049) [94.7%] 0.400 (0.052) [93.9%] 0.0979 (0.075) [95.1%] 0.293 (0.073) [93.9%] -0.193 (0.074) [95.1%] 0.698 (0.042) [89.6%]

-0.2
0 0.117 (0.036) 0.235 (0.038) 0.165 (0.066) 0.346 (0.077) -0.0287 (0.063) 0.517 (0.036)

1 0.199 (0.054) [95.1%] 0.400 (0.059)[93.8%] 0.0974 (0.084) [95.0%] 0.290 (0.083) [93.3%] -0.193 (0.086) [95.5%] 0.695 (0.048) [90.1%]

500

-1.5
0 0.192 (0.028) 0.382 (0.029) 0.0965 (0.045) 0.294 (0.042) -0.193 (0.043) 0.678 (0.021)

1 0.201 (0.029) [94.5%] 0.399 (0.031) [94.6%] 0.0987 (0.045) [94.7%] 0.298 (0.042) [95.5%] -0.197 (0.044) [95.7%] 0.704 (0.024) [93.7%]

-0.7
0 0.158 (0.025) 0.314 (0.026) 0.0992 (0.044) 0.287 (0.045) -0.154 (0.043) 0.600 (0.021)

1 0.201 (0.031) [94.2%] 0.400 (0.033) [94.1%] 0.0996 (0.048) [94.2%] 0.298 (0.045) [94.8%] -0.198 (0.046) [95.9%] 0.703 (0.027) [92.9%]

-0.2
0 0.118 (0.023) 0.235 (0.024) 0.167 (0.041) 0.350 (0.049) -0.033 (0.042) 0.522 (0.023)

1 0.200 (0.033) [94.7%] 0.399 (0.036) [94.2%] 0.0985 (0.053) [93.7%] 0.296 (0.050) [94.8%] -0.196 (0.053) [95.9%] 0.702 (0.030) [93.3%]

1000

-1.5
0 0.190 (0.020) 0.381 (0.020) 0.0969 (0.031) 0.294 (0.030) -0.196 (0.031) 0.681 (0.014)

1 0.199 (0.021) [95.1%] 0.399 (0.022) [94.8%] 0.0991 (0.031) [94.2%] 0.299 (0.030) [94.5%] -0.200 (0.031) [94.9%] 0.705 (0.016) [95.2%]

-0.7
0 0.156 (0.018) 0.314 (0.019) 0.0990 (0.031) 0.288 (0.032) -0.156 (0.030) 0.603 (0.014)

1 0.199 (0.022) [95.3%] 0.399 (0.023) [94.2%] 0.0987 (0.033) [95.5%] 0.298 (0.032) [94.4%] -0.200 (0.033) [95.0%] 0.705 (0.018) [95.1%]

-0.2
0 0.117 (0.016) 0.236 (0.017) 0.166 (0.029) 0.352 (0.035) -0.0351 (0.030) 0.524 (0.016)

1 0.199 (0.024) [95.1%] 0.399 (0.026) [94.2%] 0.0991 (0.036) [94.9%] 0.297 (0.035) [94.4%] -0.201 (0.038) [94.8%] 0.705 (0.021) [93.9%]

Table 1: Simulation study. The true parameters are displayed in the first row. For each

sample size 100, 200, 500 , or 1000 and left censoring limit −1.5, −0.7, or −0.2, we con-

trast the proposed method (labeled as 1) with conditional maximum likelihood estimation

ignoring censoring, i.e., with the censored data simply replaced by the censoring limit c.

For each parameter, the reported values are the sample mean and sample standard devi-

ation (in round brackets). In addition, the empirical coverage rates of the 95% bootstrap

confidence intervals based on the proposed method are enclosed in square brackets.

16



threshold in order to make censoring rate of 0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, respectively,

from the following model: (1 − ψB)(y∗t − Xᵀ
t (0.2, 0.4)

ᵀ) = εt, where ψ = −0.5, 0.5, 0.9,

{εt} ∼iid N(0, 0.62), and {Xt} ∼iid N(0, I) are independent of εt.

The MLE was computed by implementing the EM algorithm in Section 3.2 of Zeger &

Brookmeyer (1986), except that the AR parameter update was done by directly maximizing

the imputed log-likelihood. Here we only report the results for the case of sample size equal

to 400, as they are representative of results of other sample sizes; results for ψ = −0.5 are

similar to those for ψ = .5, and hence omitted. Figure 1 plots the ratio of the mean

squared error (MSE) of the proposed estimator to that of the MLE against the censoring

rate, for each parameter of the model, which shows that for ψ = .5, there is little loss of

efficiency as measured by the MSE, being at most 6% loss at 50% censoring rate. Moreover,

the AR parameter seemed to have been slightly more efficiently estimated by the proposed

method than ML estimation at low censoring rates, perhaps because the numerical (possibly

high-dimensional) integration required by ML estimation more than offsets its theoretical

efficiency in such cases. For ψ = 0.9, the loss of efficiency is greater but lower than 8%,

except for the AR(1) coefficient estimate whose loss elevates to 14% at 50% censoring

rate. Mean computation time is another important metric for comparing the two methods.

Figure 2 plots against the censoring rate the ratio of the mean computation time of ML

estimation to that of the proposed method, which demonstrates that the proposed method

is computationally much more efficient than ML estimation as it was almost 50 (800) times

faster than ML estimation at 50% censoring rate, for ψ = 0.5 (0.9).

3.3 The method applied to missing data

As noted by Zeger & Brookmeyer (1986), missing responses can be regarded as resulting

from left censoring with an infinite censoring limit. In particular, a CARX model with the

response missing at random provides another setting for comparing the proposed method

with Gaussian likelihood estimation which can be readily carried out via Kalman filtering

as implemented by the arima function in the stats package of (R Core Team 2015; Ripley

2002). Data of size 100, 200, 400, respectively, were simulated from the model in Section 3.2

except that the regression errors now follow an AR(2) model. Data cases were subsequently
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Figure 1: Ratios of the mean squared errors (MSE) of the proposed method to those of

maximum likelihood estimation. Left diagram: the true AR(1) coefficient ψ = 0.5. Right

diagram: ψ = 0.9.
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Figure 2: Plot of the ratio of the mean computation time of maximum likelihood estimation

to that of the proposed method. Left diagram: ψ = 0.5. Right diagram: ψ = 0.9.
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discarded randomly to make a missing rate of 0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, respectively.

With each simulated series, the CARX model was estimated once by ML estimation via the

arima function and once by the proposed method, again with the true parameter values as

the initial values. The results were similar across different sample sizes, so we only report

the case for sample size 400. Figure 3 plots against the missing rate the ratio of the MSE of

the proposed method to that of the ML estimation, for each parameter, which shows that

the MSE of the proposed method is less than 5% higher than ML estimation for missing

rate up to 20%, and is generally not more than 10% higher even at 50% missing rate,

except for the parameter σ. The simulation results in this and last sub-sections indicate

that the proposed method generally incurs relatively little loss of efficiency compared with

ML estimation.
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Figure 3: Ratios of the mean squared errors (MSE) of the proposed method to those of

maximum likelihood estimation with missing data.

3.4 The robustness of the proposed method

As the proposed method may also be regarded as a generalization of Gaussian likelihood

estimation or conditional least squares, it is of interest to assess its robustness against

departure from the normal innovation assumption. We did this with a simulation study

where the innovations were t-distributed, while the model estimation was done based on

normal innovations.
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n distribution β1 β2 ψ1 ψ2 ψ3 σ

- - 0.2 0.4 0.1 -0.3 -0.2 0.707

100

t (df =5) 0.200 (0.064)[95.0%] 0.396 (0.069)[94.2%] 0.107 (0.108)[94.7%] 0.303 (0.103)[95.9%] -0.207 (0.109)[96.3%] 0.625 (0.062)[53.5%]

t (df=10) 0.200 (0.073)[92.6%] 0.400 (0.073)[94.0%] 0.103 (0.104)[95.4%] 0.294 (0.099)[95.3%] -0.201 (0.106)[96.0%] 0.665 (0.060)[78.7%]

t (df=20) 0.200 (0.073)[93.1%] 0.405 (0.079)[92.1%] 0.102 (0.105)[95.2%] 0.292 (0.101)[95.7%] -0.201 (0.107)[96.3%] 0.677 (0.061)[84.5%]

normal 0.197 (0.079)[92.6%] 0.401 (0.075)[93.4%] 0.097 (0.106)[95.0%] 0.289 (0.102)[95.7%] -0.191 (0.108)[95.3%] 0.691 (0.062)[88.6%]

200

t (df=5) 0.199 (0.045)[95.4%] 0.395 (0.048)[93.2%] 0.103 (0.076)[93.5%] 0.302 (0.071)[95.4%] -0.210 (0.074)[94.6%] 0.638 (0.043)[50.1%]

t (df=10) 0.198 (0.048)[93.9%] 0.396 (0.050)[94.0%] 0.100 (0.074)[94.2%] 0.298 (0.068)[95.6%] -0.205 (0.072)[95.9%] 0.675 (0.044)[78.3%]

t (df=20) 0.200 (0.050)[94.1%] 0.399 (0.051)[93.6%] 0.100 (0.073)[95.4%] 0.296 (0.071)[95.1%] -0.200 (0.074)[95.7%] 0.688 (0.044)[86.4%]

normal 0.200 (0.049)[94.2%] 0.402 (0.052)[93.7%] 0.098 (0.073)[95.8%] 0.296 (0.070)[95.7%] -0.196 (0.074)[95.0%] 0.700 (0.043)[91.5%]

400

t (df=5) 0.197 (0.033)[94.1%] 0.395 (0.033)[93.5%] 0.105 (0.053)[93.5%] 0.306 (0.051)[94.0%] -0.207 (0.053)[94.0%] 0.641 (0.031)[30.9%]

t (df=10) 0.198 (0.033)[94.6%] 0.397 (0.034)[95.3%] 0.101 (0.051)[96.0%] 0.301 (0.048)[95.8%] -0.202 (0.052)[94.9%] 0.678 (0.030)[74.6%]

t (df=20) 0.200 (0.035)[93.9%] 0.400 (0.036)[94.3%] 0.099 (0.051)[95.4%] 0.299 (0.046)[96.4%] -0.200 (0.053)[94.5%] 0.692 (0.030)[87.5%]

normal 0.200 (0.036)[94.9%] 0.400 (0.037)[92.7%] 0.098 (0.052)[93.6%] 0.298 (0.049)[95.4%] -0.197 (0.052)[94.5%] 0.703 (0.030)[93.5%]

Table 2: Summary of simulation results. The true parameter values are displayed in the

second row. For each sample size and innovation degree of freedom, the average estimates

are reported, together with their sample standard deviations (enclosed in round brack-

ets) and the empirical coverage rates of their nominal 95% confidence intervals (in square

brackets).

Data were simulated from a CARX model with independent 2-dimensional standard

normal covariates and AR(3) errors with t-distributed innovations of degrees of freedom

equal to 5, 10, 20, or ∞ (i.e. normal distribution), and sample size equal to 100, 200 or 400.

See Table 2 for the true parameter values. The responses were censored whenever their

magnitude exceeds some threshold that makes a censoring rate of approximately 20%. The

innovation distributions are scaled to ensure that they have identical unit standard devi-

ation. Computation of the parametric confidence intervals were based on 500 bootstraps,

and each experiment was replicated 1000 times. The results summarized in Table 2 shows

that the proposed method is robust to heavier tails in the innovation distribution than the

normal distribution, as the estimates are comparable in terms of bias and standard devia-

tion, across the range of degrees of freedom, and the empirical coverage rates are all close

to the nominal 95%, except for the parameter σ. That the estimator of σ is non-robust

can be expected as this is the case even if there is no censoring, which highlights a future

problem for developing more robust estimation of σ.

3.5 The Ljung-Box test statistic based on simulated residuals

Next, we report some simulation results on the empirical performance of the Ljung-Box test

statistic, based on the simulated residuals, that is used as a tool for model diagnostics. The
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null model is an AR(2) model with a two-dimensional covariate comprising two independent

standard normal variables, with β
ᵀ
= (0.2, 0.4), ψ

ᵀ
= (0.28, 0.25), and σ = 0.6. We

computed the Ljung-Box statistic using the first 10 or 20 lags of the sample autocorrelation

function (ACF) of the simulated residuals. For assessing the power of the test, the AR part

of the model is embedded in an AR(3) model with the AR operator given by (1− δB)(1−

Ψ(B)), where δ = 0.0, 0.1, 0.2, · · · , 0.8. The data are left-censored so as to achieve a long-

run censoring rate of 15%, or 30%, plus the case of no censoring as a benchmark, with

sample size 100, or 200. The empirical rejection rates based on 1000 replications are shown

in Figure 4. The sizes of the test under all settings are quite close to the nominal 5% level.

The power generally increases with greater deviation of δ from zero, lesser censoring, larger

sample size and fewer lags used in computing the Ljung-Box statistic. That using more

lags in the test resulted in lower power is expected owing to the geometric decay of the

ACF so that its higher lags quickly become non-informative.

3.6 An application to the total phosphorus concentration in river

water

Phosphorus is one of the two nutrients of main concern in Iowa river water, as excessive

phosphorus in river water can result in eutrophication. Phosphorus concentration in river

water has been closely monitored under the ambient water quality program conducted by

the Iowa Department of Natural Resources (Libra, Wolter & Langel 2004). Here, we analyze

a series of 120 monthly phosphorus concentration (P) in mg/l, in river water collected at

an ambient site located at Whitebreast Creek near Knoxville, Iowa, USA, from October

1998 to March 2010. There is a gap of missing P data from September 2008 to March 2009,

when data collection was suspended owing to lack of funding. The data were censored

when P fell below certain detection limits ct (red line in Figure 5) that varied over time,

resulting in about 10% censoring. It is known that P is generally correlated with the water

discharge (Q) (Schilling, Chan, Liu & Zhang 2010). The main interest is to explore the

relationship between P and Q with censored P data. The Q data were obtained from the

website of the U.S. Geological Survey. See Figure 5 for the time plots of P, Q, and the

historical censoring limits.
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Figure 4: Empirical rejection rates of the Ljung-Box test with (simulated) residuals. Sample

size is 100 (200) in the Left (right) diagram. Empirical rejection rates are connected with a

solid line for the test using the first 10 lags of residual ACF and no censoring, while those

from experiments with left-censored data at long-run censoring rate of 15% (30%) are

connected with a dashed (dotted) line, with a horizontal solid line indicating the nominal

5% size. Results based on first 20 lags of residual ACF are similarly plotted except that

the rates are superimposed as solid circles.
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Figure 5: Time series plots of P (black solid line, scale shown on the left vertical axis), Q

(blue dotted line, scale shown on the right vertical axis) and the censoring limits ct (red

dashed line, in the same scale as that of P).

Preliminary analysis (unreported) shows that taking the logarithmic transformation for

both P and Q renders their relationship more linear. Model diagnostics with a preliminary

linear regression model log(Pt) = β0 + β1 log(Qt) + ηt indicates (i) the presence of serial

residual autocorrelation, hence we model ηt as an autoregressive process, and (ii) that the

P-Q relationship is seasonal. We model the seasonal relationship by introducing the dummy

seasonal dummy variables Sj, j = 1, 2, 3, 4 for quarters 1 to 4 and their interactions with

discharge log(Qt), where the first quarter comprises January to March, the second quarter

from April to June, etc. In summary, the model is

log(Pt) =
4∑

j=1

{β0,jSj,t + β1,jSj,t × log(Qt)}+ ηt,

where the regression errors {ηt} follow an autoregressive model as defined in Eq (2) with εt

independent and identically distributed as N(0, σ2). The coefficients β0,1 and β1,1 are the

intercept and slope for quarter 1, β0,2 and β1,2 those for quarter 2, etc.

Since the AR order is unknown and the seasonal P-Q relationship is uncertain, we fitted

a number of models with or without seasonal P-Q relationship, altogether 8 models, and
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the AR order from 1 to 3. Model selection was then carried out by using an information

criterion similar to the AIC with the log-likelihood replaced by the conditional expectation

defined in Eq (8). A seasonal regression model with AR(2) regression errors was selected.

The final model fit is summarized in Table 3; the parametric bootstrap 95% confidence

intervals are based on 1000 replicates. The P-Q relationships in quarters 2 and 4 are

quite similar. Indeed, constraining the regression coefficients to be identical for these two

quarters slightly reduces the AIC from 17.027 to 17.013. The rate of change in log(P ) per

unit change in log(Q) is highest in quarter 1 and lowest in quarter 3; see Figure 6 which

shows the simulated partial residual plot of log(Q) (c.f. Subsection 2.6), with the fitted

quarterly linear relationships superimposed in the diagram. These found relationships are

consistent with the fact that discharge is generally lowest in quarter 1 and highest in

quarter 3. The AR estimates are moderate in values, suggesting rather short memory in

the data. Figure 7 plots the ACF of the simulated residuals, which suggests no residual

autocorrelation. The Ljung-Box test statistic using the first 10 lags of the residual ACF is

5.28 with p-value 0.27, suggesting no serial autocorrelation in the residuals and that the

model provides a good fit to the data. Finally, Figure 8 plots the time plot of P and the

exponentiation of the fitted values, showing that the fitted values generally track the data

well, but less so for the larger P peaks.

As an illustration of prediction with a censored time series, we re-fitted the selected

model with the data excluding the last 6 observations that are withheld for assessing

the real prediction performance. The point predictors and their 95% prediction intervals,

computed using the procedure elaborated in Section 2.5 and assuming normal innovations,

are shown in Figure 9, with the actual data superimposed on the diagram. Overall, the

prediction tracks the data movement reasonably well although the last three data points

are somewhat close to the lower prediction limits. We note that the prediction results

(unreported) are similar with the innovations bootstrapped by drawing randomly with

replacement from the simulated residuals.
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Parameter Estimate (Confidence Interval)

β0,1 -4.26 (-4.8, -3.7)

β0,2 -3.83 (-4.7, -3.0)

β0,3 -2.54 (-3.0, -2.1)

β0,4 -3.36 (-3.9, -2.8)

β1,1 0.605 (0.47, 0.72)

β1,2 0.489 (0.32, 0.67)

β1,3 0.192 (0.07, 0.32)

β1,4 0.478 (0.33, 0.64)

ψ1 0.281 (0.04, 0.45)

ψ2 0.254 (0.01, 0.44)

σ 0.593 (0.48, 0.64)

Table 3: Estimated parameters and their 95% bootstrap confidence intervals.
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Figure 6: Partial residual plot for log(Q), with a partial residual drawn as an open circle

(triangle, plus, cross), if it belongs to quarter 1 (2,3,4). The four lines display the quar-

terly linear relationship, with solid, dashed, dotted, dot-dashed lines for quarters 1,2,3,4,

respectively.
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Figure 7: The ACF plot of the simulated residuals.
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Figure 9: Time series plot of log(P ) and their predicted values. The observed values

(predicted values, censoring limits) are connected by a black solid (blue dashed, red dashed)

line. The 95% prediction band is shaded in grey.

4 DISCUSSION AND CONCLUSION

We have proposed a new method to estimate a censored regression model with autoregres-

sive errors. The consistency and asymptotic properties are established under some general

conditions. The proposed method can be readily implemented for the case of normal inno-

vations. Simulation studies indicate that the proposed method enjoys excellent sampling

properties, whereas ignoring censoring results in substantial bias when the censoring rate

is moderately high. We illustrate the efficacy of the proposed method by analyzing the

seasonal phosphorus-discharge relationship with a phosphorus concentration data. Some

interesting future work include extension of the proposed method to estimating a censored

regression model with autoregressive moving average regression errors and studying the

theoretical properties of the proposed estimator when the covariate process Xt is non-

stationary, for instance, in a trend analysis. It is also of practical importance to study the

estimation method in the case of non-Gaussian innovation distributions. Also of interest is

to study the theoretical properties of the simulated residuals in the current setting.
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5 APPENDIX

5.1 Numerical intractability of maximum likelihood estimation

Recall the method proposed by Zeger & Brookmeyer (1986) makes use of the fact that for a

censored autoregressive process {Yt} of order p, the conditional distribution of Yt given all

past Y ’s is the same as that given the past Y ’s up to p consecutive, uncensored observations.

Hence, the likelihood function for the data Yi, i = 1, . . . , n can be simplified by first dividing

the data into blocks using the following recursive scheme. Let t0 = n+1. Given ti, 0 ≤ i ≤ k.

If tk = 1, the recursive definition of the ti’s is done. Otherwise, set tk+1 to be the largest t <

tk − 1 such that the p consecutive Y ’s before time t, i.e. {Yt−j, 1 ≤ j ≤ p}, are uncensored

and if no such p consecutive Y ’s exist, set tk+1 = 1. Since tk is strictly decreasing, only

finitely many ti’s are defined. Suppose tK = 1. Then the data can be blocked into K

blocks, namely, Bi = {Yt, ti ≤ t < ti−1}, i = 1, 2, . . . , K. The likelihood function is then

equal to the likelihood of the last block BK times the product of the conditional likelihood

of Bi given Yti−j, 1 ≤ j ≤ p, for 1 ≤ i < K. The derivation of the latter conditional

likelihood generally involves integration, either analytically or numerically, which becomes

more complex with the block dimension. Specifically, suppose the ith block Bi comprises

censored observations {Yt, t ∈ Ci} and uncensored observations {Yt, t ∈ Oi}. Then, the

conditional likelihood of Bi given Yti−j, 1 ≤ j ≤ p is obtained by integrating the conditional

density of {Yt, t ∈ Ci} given {Yt, t ∈ Oi} ∪ {Yti−j, 1 ≤ j ≤ p}, over the censoring regions

corresponding to {Yt, t ∈ Ci}, and multiplying the integral with the conditional density

of {Yt, t ∈ Oi} given {Yti−j, 1 ≤ j ≤ p}. The conditional likelihood is complex for high

block dimension because the conditional density may involve the parameters nonlinearly

and a high-dimensional integration may be required. In the ideal case that none of the

Y ’s are censored, the blocks are of unit dimension, except for the last block. In the

presence of censoring, the blocks are of random dimension. The distribution of the block

dimension is generally quite complex. As a benchmark, assuming independent censoring

and a constant censoring rate, say π (which holds if the uncensored process is independent

and identically distributed, and censoring occurs when the underlying process falls within

some fixed interval), the mean block dimension, excluding the last block BK , can be shown
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to be {1− (1− π)p}/{π(1− π)p} − p+ 1, with variance equal to {1− (2p+ 1)π(1− π)p −

(1 − π)2p+1}/{π2(1 − π)2p}; see Philippou, Georghiou & Philippou (1983). For instance,

for p = 5 and a 25% censoring rate, the mean block dimension is ≈ 8.9 with standard

deviation about 9.3. So, relatively high dimensional integration may be required even for

p = 5 to carry out maximum likelihood estimation, rendering the method increasingly

computationally intensive with the censoring rate.

5.2 Proof of Theorem 2.1

Proof. First, note that the function Zt(θ) is continuously differentiable with respect to θ.

By A1, a consistent initial estimate for the parameter is assumed, so the parameter space

is restricted to some compact neighbourhood Θ of θ0, which is assumed to satisfy some

conditions specified below.

The functional central limit theorem of Arcones & Yu (1994) will be used to prove

{√
n
(
Z(n)(θ)− Eθ0 [Zt(θ)]

)
: θ ∈ Θ

} L−→ {G(θ) : θ ∈ Θ},

where {G(θ)} is a Gaussian process which has a version with uniformly bounded and

uniformly continuous sample paths with respect to the L2 norm. See also Chan & Tsay

(1998). In order to apply the alluded functional central limit theorem to {Zt}, we need to

verify that

1 the class of functions {Zt(θ), θ ∈ Θ} is a Vapnick-Cervonenkis subgraph class of mea-

surable functions,

2 there exists an envelope function F ∈ Lp for some p > 2 such that |Zt(θ)| ≤ F for all

θ ∈ Θ, and

3 The process {(Y ∗
t , Xt, ct,l, ct,u)} is stationary, β-mixing with a geometrically decaying

β-mixing rate.

The first two conditions are essentially stated by A6. The third condition is ensured by

A2–A5.
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We verify the consistency result by using Theorem 5.9 of Van der Vaart (2000), with

the key steps established below. Firstly, we show that θ0 is a zero of Z(θ):

Eθ0 [Zt(θ0)]

=Eθ0

[
Eθ0

[
∂ℓ(Y ∗

t |F∗
t , θ)

∂θ
|θ=θ0|Gt

]]
=Eθ0

[
∂ℓ(Y ∗

t |F∗
t , θ)

∂θ
|θ=θ0

]
=Eθ0

[
Eθ0

[
∂ℓ(Y ∗

t |F∗
t , θ)

∂θ
|θ=θ0|F∗

t

]]
=Eθ0 [0]

=0.

As Z(θ) = Z(θ0) +∇Z(θ0)ᵀ(θ − θ0) + o(∥θ − θ0∥) around θ0, the non-singularity of ∇Z at

θ0, owing to A7, implies that, by shrinking the compact neighborhood Θ of θ0 if necessary,

Z(θ) ̸= 0, for all θ ∈ Θ and θ ̸= θ0. Hence, it holds that for all sufficiently small ϵ > 0,

infθ∈Θ,∥θ−θ0∥>ε ∥Eθ0 [Zt(θ)] ∥ > 0. The uniform convergence

sup
θ∈Θ

∥Z(n)(θ)− Z(θ)∥ P−→ 0

follows from the functional limit theorem for Zt(θ). The consistency property then follows

from Theorem 5.9 of Van der Vaart (2000).

The asymptotic normality result can be verified by using similar techniques in the proof

of Theorem 5.21 of Van der Vaart (2000) and Arcones & Yu (1994).

5.3 Verification of Assumptions A6 and A7 for the case of normal

innovations

Proposition 5.1. Assumption A6 holds if the innovations are normally distributed, exp(ϵ∥Xt∥2) ∈

L1 for some small ϵ > 0, and the parameter space is a sufficiently small neighborhood of

θ0. Furthermore, under the additional conditions that (a) Eθ0 [(Xt −
∑p

i=1 ψ0,iXt−i)(Xt −∑p
i=1 ψ0,iXt−i)

ᵀ] is non-singular, (b) the pdf of Xt:t−p is an analytic function and (c) as-

suming one-sided censoring with a constant censoring limit c, Assumption A7 holds for

almost all real-valued c, with the set of exceptional c’s being at most countably infinite.
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The additional condition (a) requires that there exists no non-trivial linear combination

of Xt−
∑p

i=1 ψ0,iXt−i that is identically zero, which holds if the the components of Xt−i, 0 ≤

i ≤ p are not exactly collinear. A real-valued function with a multi-dimensional argument

is an analytic function if it coincides with its Taylor series expansion locally (Krantz &

Parks 2012). Condition (b) is a mild condition which holds for many distributions including

normal and t-distributions (Golubev, Levit & Tsybakov 1996).

Proof. First note that the score function has the following form,

S(Y ∗
t |F∗

t , θ) =
1

σ2


εt(Xt −

∑p
j=1 ψjXt−j)

εtηt−1:t−p

1
2

(
ε2t
σ2 − 1

)
 (13)

where ηt = Y ∗
t −Xᵀ

t β and εt = (1−Ψ(B))ηt.

Expanding each term in the score function, it is seen that each element in the vector

Zt(θ) can be written as some linear combination of the following terms

Eθ

[
(Y ∗

t−i)
j|Gt

]
∥Xt−l∥m, (14)

where (i) i, l = 0, . . . , p; (ii) j,m = 0, 1, 2; and (iii) j +m ≤ 2.

To show the V-C property for Zt(θ), it suffices to show that Eθ

[
(Y ∗

t−i)
j|Gt

]
is a V-C

class, then so is Zt(θ). For truncated normal distributions, Tallis (1961) gives the closed-

form expressions for the moments of first and second orders, from which the V-C property

can be deduced. (Note that the V-C property is preserved by forming finite products and

sums of elements of a V-C class.)

It remains to find an envelope function for the score functions Zt(θ). It suffices to first

find some envelope functions for the expression defined by Eq (14).

As the main difficulty lies in bounding Eθ

[
(Y ∗

t−i)
j|Gt

]
, we first present a general result

about conditional expectation and change of measure. Suppose we have a conditional

expectation Eθ [W |G] where W is some random variable and G is a relevant σ-algebra, and

θ is the parameter indexing the underlying probability measure to be denoted as Pθ, where

θ lies in Nθ0 , a neighborhood of a known parameter θ0. We want to find simple conditions

sufficient for the existence of an envelope function for Eθ [W |G] for θ ∈ Nθ0 that has finite

absolute q-th moment under Pθ0 .
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Suppose Pθ, θ ∈ Nθ0 are pairwise mutually absolutely continuous so that
dPθ1
dPθ2

is well-

defined for all θ1, θ2 ∈ Nθ0 . The following lemma is instrumental, whose proof is deferred

to later.

Lemma 5.2.

Eθ(W |G) = Eθ0

(
W

dPθ

dPθ0

|G
)
Eθ

(
dPθ0

dPθ

|G
)
. (15)

Setting W ≡ 1 in (15) yields the identity

Eθ

(
dPθ0

dPθ

|G
)

= E−1
θ0

(
dPθ

dPθ0

|G
)
.

Hence,

Eθ(W |G) = Eθ0

(
W

dPθ

dPθ0

|G
)
E−1

θ0

(
dPθ

dPθ0

|G
)
.

Jensen’s inequality then implies that

|Eθ(W |G)| ≤ Eθ(|W ||G) = Eθ0

(
|W | dPθ

dPθ0

∣∣∣∣G)E−1
θ0

(
dPθ

dPθ0

∣∣∣∣G) .
As the function f(x) = 1/x, x > 0 is convex, Jensen’s inequality entails that

|Eθ(W |G)| ≤ Eθ0

(
|W | dPθ

dPθ0

|G
)
Eθ0

(
dPθ0

dPθ

|G
)
. (16)

We shall assume that the neighborhood Nθ0 is chosen such that there exists a random

variable H of finite absolute r-th moment under Pθ0 and such that
dPθ1
dPθ2

≤ H for all θ1, θ2 ∈

Nθ0 . It then follows from (16) that

sup
θ∈Nθ0

|Eθ(W |G)| ≤ Eθ0 (|W |H|G)Eθ0 (H|G) . (17)

The right side of (17) is then an envelope function of {Eθ(W |G), θ ∈ Nθ0}.

We now consider the case of normally distributed innovations in our model, in which

case the conditional distribution of Y ∗
t:t−p given theX’s is multivariate normalN(xᵀt:t−pβ,Σ),

where Σ is determined by ψ and σ. Let y = yt:t−p and µi = xᵀt:t−pβi, i = 0, 1, 2. Direct

calculation yields

dPθ1

dPθ2

(y) = exp

{
yᵀΣ−1

1 (µ1 − µ2)−
1

2
(µ1 + µ2)

ᵀΣ−1
1 (µ1 − µ2)

}
×
(
|Σ2|
|Σ1|

)(p+1)/2

exp

{
1

2
(y − µ2)

ᵀΣ−1
1 (Σ1 − Σ2) Σ

−1
2 (y − µ2)

}
≤c exp

{
ϵ(∥y − µ0∥2 + ∥xt:t−p∥2)

}
:=H,
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where c is some constant independent of θ1, θ2, and ϵ can be arbitrarily small as long as

the neighborhood Nθ0 is sufficiently small. Then or any r > 0,

Eθ0 [H
r] =Eθ0 [Eθ0 [H

r| xt:t−p]]

=cEθ0

[
exp(rϵ∥xt:t−p∥2)

]
Eθ0

[
exp(rϵ∥y − µ0∥2)

∣∣xt:t−p

]
=cEθ0

[
exp(rϵ∥xt:t−p∥2)

]
Eθ0

[
exp(rϵ∥y − µ0∥2)

]
,

which is finite when ϵ is small enough by the assumption that exp(rϵ∥Xt∥2) ∈ L1.

It follows from E [exp(ϵ∥Xt∥2)] <∞ for some ϵ > 0 that Xt has finite moments of any fi-

nite order. An envelope function for the expression in Eq (14) is Eθ0

(
|Y ∗

t−i|jH|Gt

)
Eθ0 (H|Gt) ∥Xt−l∥m.

Because Y ∗
t−j given the X’s is normal, it admits finite moments of any order. It follows

from the generalized Hölder inequality and by making the neighborhood Nθ0 sufficiently

small that |Yt−i|jHEθ0 [H|Gt]∥Xt−l∥m is Lq and so is the envelope function.

Next we prove that with one-sided censoring and constant censoring limit, Eθ0 [∇Zt(θ0)]

can only be singular for at most countably infinitely many censoring limit values. Without

loss of generality, consider the case of left censoring with l being the left censoring limit.

First we claim that

Eθ [∇Zt(θ)] = −Eθ

[
Eθ[S(Y

∗
t |F∗

t , θ)|Gt]Eθ[S(Y
∗
t:t−p|Xt:t−p, θ)|Gt]

ᵀ] , (18)

the proof of which we outline for the case with AR(1) errors and no covariates, as the

proof for the general case is similar. Let S1,t = S(Y ∗
t |F∗

t , θ) = S(Y ∗
t |Y ∗

t−1, θ), S2,t =

S(Y ∗
t , Y

∗
t−1, θ) = ∇ log f(Y ∗

t , Y
∗
t−1, θ) where we abuse the notation f(Y

∗
t , Y

∗
t−1, θ) to stand for

the joint pdf of Y ∗
t , Y

∗
t−1 assuming θ is the parameter. Let S3,t = S(Y ∗

t−1; θ) = ∇ log f(Y ∗
t−1, θ),

so S2,t = S1,t + S3,t. For any pair yt = (yt, yt−1)
ᵀ, there exists a unique region R = R(yt)

such that (Y ∗
t , Y

∗
t−1)

ᵀ ∈ R if and only if the corresponding censored observation is yt. For

instance if both yt, yt−1 are left censored, R = (−∞, l] × (−∞, l] whereas if yt is cen-

sored but yt−1 is not, then R = (−∞, l] × {yt−1}. If both of them are not censored,

R = {yt} × {yt−1}, a singleton. Thus, the sigma algebra Gt is equivalent to that generated

by (Y ∗
t , Y

∗
t−1)

ᵀ ∈ R(yt).

Then, for (Y ∗
t , Y

∗
t−1) ∈ R with R = (−∞, l]×(−∞, l], i.e., both yt and yt−1 are censored,
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and omitting dy∗t dy
∗
t−1 in the following integrals for simplicity, we have

∇Zt =∇
(∫

R

∇ log f(y∗t |y∗t−1; θ)
f(y∗t , y

∗
t−1; θ)∫

R
f(y∗t , y

∗
t−1; θ)

)
=

∫
R

∇2 log f(y∗t |y∗t−1; θ)
f(y∗t , y

∗
t−1; θ)∫

R
f(y∗t , y

∗
t−1; θ)

+

∫
R

∇ log f(y∗t |y∗t−1; θ)(∇ log f(y∗t , y
∗
t−1; θ))

ᵀ f(y∗t , y
∗
t−1; θ)∫

R
f(y∗t , y

∗
t−1; θ)

−
∫
R

∇ log f(y∗t |y∗t−1; θ)f(y
∗
t , y

∗
t−1; θ)

∫
R
(∇f(y∗t , y∗t−1; θ))

ᵀ

{
∫
R
f(y∗t , y

∗
t−1; θ)}2

=Eθ [∇S1,t|Gt] + Eθ

[
S1,tS

ᵀ
2,t|Gt

]
− Eθ [S1,t|Gt] Eθ

[
Sᵀ
2,t|Gt

]
. (19)

It can be readily verified that the last equality in the preceding display continues to hold

even if R is 1-dimensional or a singleton, in which case the integral becomes a 1-dimensional

integral with respect to the Lebesgue measure, or the counting measure on a singleton,

respectively. Taking expectation on both sides of (19) yields

Eθ∇Zt(θ) = Eθ [∇S1,t] + Eθ

[
S1,tS

ᵀ
2,t

]
+ Eθ

[
Eθ [S1,t|Gt] Eθ

[
Sᵀ
2,t|Gt

]]
= Eθ [∇S1,t] + Eθ [S1,t(S1,t + S3,t)

ᵀ]− Eθ

[
Eθ [S1,t|Gt] Eθ

[
Sᵀ
2,t|Gt

]]
,

where ∇S1,t is evaluated at θ, etc., hence (18), because Eθ [∇S1,t] + Eθ

[
S1,tS

ᵀ
1,t

]
= 0 and

Eθ

[
S1,tS

ᵀ
3,t

]
= 0. This completes the proof of the claim in the special case.

Even for fixed θ, all expectations are implicit functions of the censoring limit l. Below,

we write El(·) = Eθ,l(·) to emphasize its dependence on l, but l will be suppressed whenever

the expectation does not depend on l. We now verify the result concerning the non-

singularity of Eθ0,l [∇Zt(θ0)], except for countably many l. We prove this by showing that

for fixed θ, (i) the components of El [∇Zt(θ)] are real analytic functions and hence so is

the determinant dθ(l) = det {Eθ,l [∇Zt(θ)]} and (ii) for fixed θ0, liml→−∞ dθ0(l) exists and

is non-zero, under the condition that Eθ[(Xt −
∑p

i=1 ψiXt−i)(Xt −
∑p

i=1 ψiXt−i)
ᵀ] is non-

singular at θ = θ0. Note the latter expectation does not depend on l. Results (i) and

(ii) then imply that Eθ0,l [∇Zt(θ0)] is non-singular, except for at most countably many l,

otherwise the roots of dθ0(l) = 0 admit an accumulation point prompting dθ0(l) ≡ 0, hence

liml→−∞ dθ0(l) = 0, resulting in a contradiction. Here, we have relied on the fact that the

roots of a non-constant analytic function cannot have an accumulation point.

34



We first verify (ii). Let Rl = {yt:t−p : yt−i > l, i = 0, 1, . . . , p} and IRl (IRcl ) the

indicator function of Rl (its complement). Note yt:t−p ∈ Rl if and only if none of yt−i

are censored, for i = 0, 1, . . . , p. Hence, on Rl, Eθ,l[S(Y
∗
t |F∗

t , θ)|Gt] = S(Y ∗
t |F∗

t , θ) and

Eθ,l[S(Y
∗
t:t−p|Xt:t−p, θ)|Gt] = S(Y ∗

t:t−p|Xt:t−p, θ). It follows from Eqn. (18) that

Eθ,l [∇Zt(θ)]

= −Eθ,l

[
S(Y ∗

t |F∗
t , θ)S(Y

∗
t:t−p|Xt:t−p, θ)

ᵀIRl
]

− Eθ,l

[
Eθ,l[S(Y

∗
t |F∗

t , θ)|Gt]Eθ,l[S(Y
∗
t:t−p|Xt:t−p, θ)|Gt]

ᵀIRcl
]
. (20)

As l → −∞, it follows from the Lebesgue dominated convergence theorem, with

|S(Y ∗
t:t−p|Xt:t−p, θ)

ᵀS(Y ∗
t |F∗

t , θ)| as the component-wise dominating function, that the first

term on the right side of the preceding display converges to

− Eθ

[
S(Y ∗

t |F∗
t , θ)S(Y

∗
t:t−p|Xt:t−p, θ)

ᵀ]
= −Eθ [S(Y

∗
t |F∗

t , θ)S(Y
∗
t |F∗

t , θ)
ᵀ] ,

which equals the block diagonal matrix consisting of the following diagonal blocks

−Eθ [(Xt −
∑p

i=1 ψiXt−i) (Xt −
∑p

i=1 ψiXt−i)
ᵀ
], −Eθ

[
ηt−1:t−pη

ᵀ
t−1:t−p

]
and−1/(2σ4); c.f. (13).

Note that A3 and A4 imply that −Eθ

[
ηt−1:t−pη

ᵀ
t−1:t−p

]
is always strictly negative definite.

On the other hand the second term tends to zero as l → −∞, which can be shown as follows.

For any vector or matrix v, let ∥v∥2 its squared Euclidean norm and |v| the vector obtained

from taking the absolute value component-wise. Upon noting that IRcl is Gt-measurable,

Cauchy-Schwartz and Jensen inequalities entail that

trace
(
|Eθ,l

{
Eθ,l[S(Y

∗
t |F∗

t , θ)|Gt]Eθ,l[S(Y
∗
t:t−p|Xt:t−p, θ)|Gt]

ᵀIRcl
}
|
)

≤ E
1/2
θ [∥S(Y ∗

t |F∗
t , θ)∥2IRcl ]× E

1/2
θ [∥S(Y ∗

t:t−p|Xt:t−p, θ)∥2IRcl ],

which converges to 0 as l → −∞, verifying the claim regarding the second term in the

decomposition, and thence (ii).

We sketch the proof for (i) only in the simple case p = 1 and no covariates, as the proof

for the general case is similar. Letting Rl,1 = {y∗t > l, yt−1 > l}, Rl,2 = {y∗t ≤ l, yt−1 > l},
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Rl,3 = {y∗t > l, yt−1 ≤ l}, and Rl,4 = {y∗t ≤ l, yt−1 ≤ l}, Eqn (18) becomes

Eθ,l [∇Zt(θ)]

= −Eθ,l

[
Eθ,l[S(Y

∗
t |F∗

t , θ)|Gt]S(Y
∗
t:t−1, θ)]

ᵀ]
= −

4∑
i=1

Eθ,l

[
Eθ,l[S(Y

∗
t |F∗

t , θ)|Gt]S(Y
∗
t:t−p, θ)

ᵀIRl,i
]
. (21)

That Eθ,l [∇Zt(θ)] is an (component-wise) analytic function of l follows from verifying the

said property for each summand in the preceding decomposition. For instance, after some

algebra, the second summand equals∫ ∞

l

∫ l

−∞ S(y∗t |y∗t−1, θ)f(y
∗
t , y

∗
t−1, θ)dy

∗
t ×

∫ l

−∞ S(y∗t , y
∗
t−1, θ)f(y

∗
t , y

∗
t−1, θ)dy

∗
t∫ l

−∞ f(y∗t , y
∗
t−1, θ)dy

∗
t

dy∗t−1, (22)

which is an analytic function of l. This can be verified by noticing (1) S(y∗t |F∗
t , θ),

S(Y ∗
t:t−1, θ) are polynomials, and thus analytic functions of y∗t , y

∗
t−1, (2) f(y∗t:t−1, θ), be-

ing the jointly normal density of y∗t , y
∗
t−1, is analytic with respect to y∗t , y

∗
t−1, (3) sum,

product and composition of analytic functions are analytic and so is the ratio of an ana-

lytic function to a positive analytic function, and (4) the indefinite integral of an analytic

function with respect to any variable is analytic, see Propositions 2.2.2 and 2.2.3 in Krantz

& Parks (2012). Other summands can be similarly shown to be analytic functions of l,

which completes the proof.

Proof of Lemma 5.2. Note that the conditional expectation Eθ(W |G) is characterized by

(i) Eθ(W |G) is G-measurable function and (ii) for all A ∈ G, the following equality holds:∫
A

WdPθ =

∫
A

Eθ(W |G)dPθ.

Consider the following display, where A is an arbitrary element in G:∫
A

WdPθ =

∫
A

W
dPθ

dPθ0

dPθ0

=

∫
A

Eθ0

(
W

dPθ

dPθ0

|G
)
dPθ0

=

∫
A

Eθ0

(
W

dPθ

dPθ0

|G
)
dPθ0

dPθ

dPθ

=

∫
A

Eθ0

(
W

dPθ

dPθ0

|G
)
Eθ

(
dPθ0

dPθ

|G
)
dPθ.

36



The claim follows from the preceding equality and that the right side of (15) is G-measurable.
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